
MEGA: Overcoming Traditional Problems
with OS Huge Page Management

Theodore Michailidis, Alex Delis, Mema Roussopoulos
University of Athens

Motivation

❖ Capacity of memory is ever growing, TLBs do not scale.
❖ Problem: Increased TLB misses, cause up to 50% overhead

❖ Idea: Huge pages (usually 2MB/1GB), proposed in the 1990s.
❖ Until recently, TLBs had limited number of HP entries (up to 64MB)
❖ Since 2013, TLBs have more entries for HP (3GB)  

 Sophisticated software is needed.
❖ Linux has the Transparent Huge Pages (THP) feature.

Benefit from using huge pages
❖ Experiment: On a machine with 16GB of RAM, 2 million set requests with 4KB

objects on Redis key-value store, analyze performance with perf.

THP disabled THP enabled

TLB data loads 15,172,995,558 12.162.832.618

TLB data load misses 70,996,819 315.154

TLB instruction load misses 36,694,469 87,874

TLB data store misses 9,496,490 40,932

Total cycles 30,369,768,113 14,871,159,636

Data cycles for page walking 1,358,301,181 18,422,086

Instruction cycles from page
walking

656,749,586 3,645,584

Data reads from main memory
for page walking

227,534,040 421,743

Instruction reads from main
memory for page walking

120,997,735 465,317

Total execution time 11.722s 7.065s (-40%)

THP does not come for free

THP does not come for free

THP does not come for free

THP does not come for free

But…why?
❖ Current Linux kernel’s huge page management is greedy and aggressive.

❖ Every time a page fault occurs in a huge page region (i.e. 2MB), the
kernel tries to promote to a huge page.

❖ If a small chunk of memory inside a huge page is freed, the kernel
demotes it instantly to multiple base pages.

❖ Problems:

❖ Promotion and demotion are synchronous.

❖ Promotion and demotion are costly, mainly due to TLB invalidations.

❖ Memory compaction is synchronous.

Problems with THP

❖ Increased page fault latency

❖ Memory bloating

❖ Memory fragmentation

❖ Huge pages are not swappable

❖ Huge pages are not migratable

Increased page fault latency

❖ Experiment: 2 million set requests with 4KB objects on Redis.

❖ Trace the __do_page_fault function using the ftrace tool.

8GB base 8GB huge

#page faults 2,731,657 291,098

Average 0.9 μs 2.9 μs

90th 1.5 μs 1.8 μs

99th 2.8 μs 118.2 μs

99.9th 4.2 μs 123.8 μs

Memory bloating
❖ When a process reserves more memory than it uses, resulting in

increased memory footprint.
❖ Experiment:

❖ 2 million hset requests with 4KB objects in Redis.
❖ remove 1.5 million objects.

❖ trigger hgetall command.

Base pages only Huge pages enabled

7.6 GB 11.1 GB (+ 46%)

Memory fragmentation

❖ Aggressive promotion to huge pages rapidly fragments
memory.

❖ Severe memory fragmentation leads to increased page
fault latency and other issues.

Huge pages are not swappable

❖ In current Linux, huge pages cannot be swapped.

❖ To reclaim memory from a huge page, kernel demotes
it into base pages and swaps them out.

❖ When base pages are swapped in, kernel must
promote them again to huge pages.

Huge pages are not migratable

❖ Huge pages are not moved (migrated) during the
memory compaction algorithm.

❖ This leads to additional fragmentation.

Interconnected problems

Memory fragmentation

Increased page fault latency

No available memory Synchronous compaction

Huge pages are not migratable

Promoting aggressively More available memory

Our framework for huge page management

❖ MEGA: Managing Efficiently Huge Pages1

❖ MEGA manages 2MB huge pages.

❖ Based on the following:

❖ Base pages map tracking (space).

❖ Huge page region utilization tracking (time).

❖ New memory compaction algorithm.

1Also, from the Ancient Greek word μέγα, which means large

Base pages map tracking in MEGA
❖ In page fault handler, record which base pages in which huge page

region are mapped.

Page fault
handler

Map tracking
bitvector

Update
corresponding bit

Huge page region

Page Utilization Tracking

❖ Idle page tracking API (since Linux kernel 4.3)
❖ Associated idle flag (in software) with access bit (in hardware)

❖ Set the idle flag (and clear the access bit).
❖ Wait for some predefined time for the page to be accessed.
❖ Check the idle flag.

❖ Setting the access bit clears the idle flag.
❖ Clearing the access bit causes a TLB invalidation.

Huge page region utilization tracking in MEGA

❖ Periodically scan to track pages’ utilization, and store last 10
utilization numbers (utilization history buffer).

❖ Due to high cost (TLB invalidation):
❖ Only track huge page regions with 50% base pages mapped.
❖ If %mapped base pages drops under 25%, stop tracking

utilization of huge page region.

Asynchronous promotion/demotion in MEGA

❖ Promote, when #base_pages_mapped > 90% and
utilization > 50%.

❖ Demote, when #base_pages_mapped < 50% or
utilization < 25%.

❖ Thresholds chosen to reduce memory bloating and
frequent promotions and demotions.

Linux memory compaction algorithm

❖ Scan Compact/Migrate

Movable pages

Free pages

Migration scanner Free scanner

Compact

Linux memory compaction algorithm
❖ Current memory compaction done when it is too late.

❖ After compaction, memory does not fully recover.

❖ Experiment: Continuously allocate/free 10GB of memory and
record total free 2MB blocks after the memory is freed.

To
ta

l c
om

bi
ne

d
fr

ee

2M
B

bl
oc

ks
 in

 G
B

0

3000

6000

9000

12000

Object size

Initial 16KB 64KB 256KB 1MB 4MB 16MB 64MB

Memory compaction in MEGA
❖ Prioritize physical huge page regions that:

❖ Are “cold”/utilized less (less interference).

❖ Have fewer base pages mapped

❖ Less costly to move.

❖ Easier to find free space to move reduces the risk of
failed migration.

❖ Are “older”, in terms of mapping. Newly created data
(memory) is more likely to “die” (be freed) in the near
future.

Memory compaction in MEGA

❖ Cost-benefit approach used for segment cleaning in LFS.  

❖ Proactive compaction of up to 200MB of memory, to
avoid high compaction costs.

benefit
cost

=
age * (1 − %bpagesMapped) * (1 − %bpagesAccessed)

(2 * %bpagesMapped)

Evaluation
❖ 16GB DDR3 RAM

❖ 500GB SSD

❖ Intel i7 2.3GHz

❖ L1 Data 32KB

❖ L1 Instruction 32KB

❖ Shared L2 256KB

❖ Shared L3 6MB

Evaluation
❖ Compare MEGA, Linux kernel 4.16.8 and Ingens [Kwon,

2016], the state-of-the-art framework for huge pages.

❖ Our evaluation includes experiments for:

❖ Page fault latency

❖ Utilization based promotion/demotion

❖ Memory compaction

❖ Performance impact for compute-intensive workloads

❖ Big-memory workloads

Ingens

❖ Promotes a huge page region if #base_pages_mapped >
90% and demotes a huge page if any number of base
pages are freed within it.

❖ Checks the utilization of a process’ previously allocated
huge pages, to determine if it will “get” another huge
page (fairness).

❖ Periodically compacts 100MB of memory, using the
default memory compaction algorithm.

Evaluation - Page fault latency
❖ 2 million set requests with 4KB objects on Redis.

Latency Linux 4.16.8
THP disabled

Linux 4.16.8
THP enabled

Ingens MEGA

Average 0.9 μs 2.9 μs (x3.22) 1.6 μs (x1.78) 2.5 μs (x2.78)

90th 1.5 μs 1.8 μs (x1.2) 1.7 μs (x1.13) 3.1 μs (x2.06)

99th 2.8 μs 118.2 μs (x42.21) 4.5 μs (x1.6) 6.1 μs (x2.17)

99.9th 4.2 μs 123.8 μs (x29.46) 400.8 μs (x95.42) 15.1 μs (x3.59)

Evaluation - Utilization based promotion/demotion

❖ Allocate 8GB, iterate over it, then free it.

❖ We do this 50 times and measure the total execution
time in seconds.

Total execution time in seconds

Ingens 47.614s (+59%)

MEGA 29.98s

Evaluation - Utilization based promotion/demotion

❖ We demonstrate an extreme case: Allocate 6GB of memory, iterate
over it with step 32 * 1024 (L1 data cache size).

❖ We do this 10 times and measure the total execution time in seconds.

❖ In MEGA, the utilization is not high enough to exceed the threshold.

Total execution time in seconds

Ingens 158.78s

MEGA 324.11s

Evaluation - Memory compaction
❖ We allocate 12GB of memory and iterate once through it.

❖ Free 50% of allocated memory in chunks of 1MB.

❖ We run this experiment for 2 minutes and then observe in
the next 1 minute how fast the system restores 2MB blocks.

❖ We record the number of 2MB blocks available throughout
the 3 minutes.

❖ Increase the compaction limit in Ingens to 200MB (every 5
seconds).

Evaluation - Memory compaction
❖ MEGA recovers faster and has nearly 2x the number of 2MB available blocks Ingens has.

❖ MEGA has 5x Ingens’ #successfully migrated pages (7,352 vs 1,432)

❖ Ingens has a small decline in 2MB blocks (at 40s).

#2
M

B
bl

oc
ks

0

200

400

600

800

1000

1200

1400

1600

Time (s)
10 30 50 70 90 110 130 150 170

Ingens MEGA

Evaluation - Performance Impact
❖ Measure performance impact of MEGA on compute-

intensive workloads (PARSEC 3.0 benchmark suite).

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
w

.r.
t L

in
ux

 w
/

TH
P

0,9

0,95

1

1,05

Blackscholes
Bodytrack
Canneal
Dedup
Facesim
Ferret
Fluidanimate
Freqmine
Raytrace
Swaptions
Vips
x246

Ingens MEGA

Evaluation - Big-Memory Workloads

❖ 256GB DDR4 RAM, 2.8TB of SATA 3 SSD, Intel Xeon Processor E5-2650 v4
@2.2GHz

❖ 2 workloads:

❖ We run a workload that allocates/manipulates/frees at least 100GB of
memory at a time.

❖ Then, we run redis-benchmark and measures latency, throughput and
the number of free 2MB blocks.

Evaluation - Big-Memory Workloads

Allocate of 200GB in 1MB chunks Free 100GB

Allocate 100GB and free the rest (100GB)
from the previous iteration

X5

Result: The memory becomes fragmented, simulating cloud systems that
run real client workloads.

Step 1

Step 2
Run redis-benchmark with 40000 set operations with randomly
selected 12-byte sized keys, values of 2MB and 50 parallel clients.

Evaluation - Big-Memory Workloads

❖ Note: increasing the number of set operations in Ingens, causes the
first workload to be killed due to extreme memory starvation.

Stats Ingens MEGA

Throughput (req/s) 501.54 638.05

99th latency 278ms 104ms

99.9th latency 421ms 260ms

99.99th latency 505ms 266ms

Execution Time 79.75s
(+27%)

62.69s

Memory block size Ingens MEGA

#2MB 42 14

#4MB 58 1146

Total available
2MB blocks

158 2306

Summary
❖ MEGA combines spatial and temporal tracking to make

decisions about promotions/demotions.

❖ Utilization tracking is critical for system and
workload performance.

❖ MEGA compaction algorithm moves old, cold and
partially used physical huge page regions.

❖ Achieves better memory state than Linux or Ingens
and minimizes workload interference.

Thank you!

Questions?

Backup Slides

TLB entries coverage

To
ta

l e
nt

rie
s (

G
B)

0

1

2

3

4

Ivy Bridge  
2012

Haswell  
2013

Skylake 
2015

Cascade Lake  
2018

3,063,06

2,06

0,06 0,0060,0060,0040,002

4KB 2MB

Memory compaction algorithm
❖ Linux in x86_64 divides physical memory in 3 zones:

❖ [1] ZONE_DMA (0 - 16MB). Primarily for devices that can DMA only into 24-bit addresses.

❖ [2] ZONE_DMA32 (16MB - 4GB). Primarily for devices that can DMA only into 32-bit addresses

❖ [3] ZONE_NORMAL (4GB - End of memory). Contains normal addressable pages.

❖ The kernel tries to satisfy user-level memory requests from ZONE_NORMAL, and if there is no
available memory, it tries to allocate memory from ZONE_DMA32.

[1] [2] [3]

Evaluation - Utilization based promotion/demotion

❖ Workload that allocates 6GB of memory and uses only 1GB.

❖ Run concurrently 2 instances of this workload to put pressure in the system.

❖ Record number of THP used and number of 2MB blocks of memory before and
after one minute of execution.

❖ Ingens tries to allocate 3,967 more huge pages, but the memory is too fragmented.

Ingens MEGA

#THP used 2,447 1,024

#2MB blocks before
execution

6,710 6,733

#2MB blocks after one
minute of execution

50 282

Evaluation - Performance Impact
❖ Measuring the performance and latency of MySQL using the sysbench benchmark suite.

❖ Run for 1 minute a read-only workload on a table with 30 million rows, executed by 8 threads

❖ Ingens experiences the biggest average, max and 95th latency and the lowest transaction
throughput

❖ MEGA's number of transactions per second is close to the number of transactions per second
that Linux with huge pages achieves, while keeping the latency at low levels.

MEGA Ingens Linux base
pages

Linux huge
pages

Min 0,76 ms 0,68 ms 0,74 ms 0,85 ms

Average 1,44 ms 1,71 ms 1,63 ms 1,32 ms

Max 54,01 ms 108,12 ms 11,66 ms 64,94 ms

95th
percentile

2,18 ms 3,62 ms 3,07 ms 1,76 ms

Transactions
per second

5556,29 4661,36 4895,21 6056,84

